YOLOv7速度精度超越其他变体,大神AB发推,网友:还得是你
YOLOv7速度精度超越其他变体,大神AB发推,网友:还得是你
Pine 发自 凹非寺
量子位 | QbitAI前脚美团刚发布YOLOv6, YOLO官方团队又放出新版本。
曾参与YOLO项目维护的大神Alexey Bochkovskiy在推特上声称:
官方版YOLOv7比以下版本的精度和速度都要好。
在论文中,团队详细对比了YOLOv7和其他变体的性能对比,并介绍v7版本的新变化。
话不多说,YOLOv7有多强一起来看实验结果。
速度、精度都超越其他变体
论文中,实验以之前版本的YOLO和最先进的目标检测模型作为基准。
表格是YOLOv7模型在相同的参数设置下与其他版本的比较:
数据标绿代表性能相较于之前版本有所提升,参数量和计算量相较于之前版本,大部分均有所减少,AP也有所提升。
即使在云GPU模型上,最新模型仍可以保持较高的AP,与此同时计算量和参数量相较于之前模型也均有所下降。
YOLOv7可以很好地平衡速度与精度。
与现有的通用GPU和移动GPU的目标检测模型进行比较:
YOLOv7在速度(FPS)和精度(AP)均超过其他目标检测模型。
比如,在输入分辨率为1280时,将YOLOv7与YOLOR进行比较,YOLOv7W6的推理速度比YOLORP6快8fps,检测率也提高了1%AP。
性能是怎么提升的?
改进实时目标检测模型的性能,往往要从以下几点入手:
1、更快更强的网络架构;
2、更有效的特征集成方法;、更准确的检测方法;4、更精确的损失函数;5、更有效的标签分配方法;6、更有效的训练方法。YOLOv7主要从4、5、6入手设计性能更好的检测模型。
首先
,YOLOv7扩展了高效长程注意力网络,称为ExtendedELA(简称EELA)。在大规模的ELA中,无论梯度路径长度和块的数量如何,网络都能达到稳定状态。
但是如果无限地堆叠计算块,这种稳定状态也可能会被破坏,参数利用率也会降低。
EELA对基数(Cardinality)做了扩展(Expand)、乱序(Shuffle)、合并(Merge cardinality),能在不破坏原始梯度路径的情况下,提高网络的学习能力。
在架构方面,EELA只改变了计算块中的体系结构,没有改变过渡层的体系结构。
除了保持原来ELA的设计架构外,EELA还可以引导不同的计算块组来学习更多样化的特性。
而后
,YOLOv7采用基于级联的(Concatenationbased)模型缩放方法。模型缩放是指调整模型的一些属性,生成不同尺度的模型,以满足不同推理速度的需求。
然而,模型缩放如果应用于基于连接的架构,当扩大或缩小执行深度时,基于连接的翻译层的计算块将减少或增加。
由此可以推断,对于基于级联的模型,不能单独分析不同的缩放因子,必须一起考虑。
基于级联的模型缩放方法是一个复合模型缩放方法,当缩放一个计算块的深度因子时,同时也要计算该块输出通道的变化。
然后,对过渡层以相同的变化量进行宽度因子缩放,这样就可以保持模型在初始设计时的特性,并保持最优结构。
在论文研究中,作者还设计了有计划的重新参数化卷积(Planned reparameterized convolution)。
RepConv在VGG中有比较优异的性能,但当它直接应用于Reset、Denseet或者其他架构时,精度会明显降低。
这是因为RepConv中的直连(Identity connection)破坏了Reset中的残差和Denseet中的连接。
因此,论文研究中使用没有直连的RepConv(RepConv)来设计网络结构。
在YOLOv7的标签分配机制中,需要同时考虑网络预测结果与基准,然后将软标签(综合考虑,优化之后的标签)分配到“label assigner”机制。
那么接下来,“软标签要分配给auxiliary head还是lead head呢?”
论文提出了一种新的标签分配法,如下中的(d)、(e),基于lead head预测,生成从粗到细的层次标签,分别用于lead head和auxiliary head的学习。
(d)让较浅的auxiliary head学习lead head已经学习到的信息,而输lead head则可以更专注于为学习到的残差信息。
而e中,会生成两组软标签,即粗标签和细标签。auxiliary head不如lead head学习能力强,因此要重点优化它的召回率,避免丢失掉需要学习的信息。
目前,YOLOv7已官方开源,有兴趣的伙伴可以戳下文链接。
- 上一篇
“宅”经济下的O2O上门按摩服务行业:东郊到家竞品分析
“宅”经济下的O2O上门按摩服务行业:东郊到家竞品分析 背景:“宅”经济催生“懒”人群,这批消费群体规模增长迅速,随着Z世代人群逐步步入工作岗位,消费能力逐步凸显,其固有的生活和消费方式有利于平台侧的快速发展;从平台侧看,由于用户的需求带动O2O行业的爆发式发展,弹幕视频网站从小众走向大众、国内手机动漫产业蓬勃发展等反促进用户侧人群向Z时代之外的人群发展,服务的内容进而发展为外卖、生鲜电商、
- 下一篇
如何成为做战略分析师——商业分析方法论连载三
如何成为做战略分析师——商业分析方法论连载三 编辑导语:精准的战略分析对于战略规划和战略决策来说十分重要,本篇文章作者分享了作为战略分析师的具体思路和逻辑,讲述了战略和战术的一些差异;行研、市研、竞研对战略的作用;行业、市场、竞品研究内容以及从01快速了解一个陌生的行业的具体内容,干货满满,一起来学习一下吧。空白写在前面:作者:黄家翰,毕业于台湾国立清华大学,物理电子本硕。从数据分析师转型为
相关文章
留言与评论(共有 20 条评论) |
本站网友 电容屏 | 2分钟前 发表 |
当缩放一个计算块的深度因子时 | |
本站网友 嘉兴学院附近租房 | 18分钟前 发表 |
5 | |
本站网友 美白隔离霜 | 27分钟前 发表 |
这是因为RepConv中的直连(Identity connection)破坏了Reset中的残差和Denseet中的连接 | |
本站网友 绣球花有毒吗 | 3分钟前 发表 |
最新模型仍可以保持较高的AP | |
本站网友 iphone应用开发 | 13分钟前 发表 |
比如 | |
本站网友 多背一公斤 | 27分钟前 发表 |
由此可以推断 | |
本站网友 南京江宁万达 | 7分钟前 发表 |
模型缩放是指调整模型的一些属性 | |
本站网友 高位肛瘘 | 22分钟前 发表 |
本站网友 苏巍 | 29分钟前 发表 |
AP也有所提升 | |
本站网友 没图你说个j8 | 9分钟前 发表 |
性能是怎么提升的?改进实时目标检测模型的性能 | |
本站网友 神女应无恙 | 4分钟前 发表 |
精度会明显降低 | |
本站网友 什么牌子的奶瓶最好 | 29分钟前 发表 |
YOLO官方团队又放出新版本 | |
本站网友 摩托诺拉 | 27分钟前 发表 |
这种稳定状态也可能会被破坏 | |
本站网友 oprea | 3分钟前 发表 |
同时也要计算该块输出通道的变化 | |
本站网友 愚蠢的爱 | 30分钟前 发表 |
曾参与YOLO项目维护的大神Alexey Bochkovskiy在推特上声称:官方版YOLOv7比以下版本的精度和速度都要好 | |
本站网友 比较好的眼部整形医院 | 7分钟前 发表 |
首先 | |
本站网友 淮南二手房出售 | 18分钟前 发表 |
这种稳定状态也可能会被破坏 | |
本站网友 右旋糖酐羟丙甲纤维素滴眼液 | 0秒前 发表 |
这种稳定状态也可能会被破坏 | |
本站网友 偷原味丝袜 | 10分钟前 发表 |
更快更强的网络架构;2 |